16 5月 2019

【論文紹介】Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes | Nature Energy

出典:https://www.nature.com/

Nature Energy doi: 10.1038/s41560-019-0387-1
・米国エネルギー省(DOE)のアルゴンヌ国立研究所の研究者らが、層状リチウム遷移金属酸化物正極用の新規なコーティングを開発。
・酸化化学気相成長法を用いて、層状酸化物カソード材料上に保護導電性ポリマー(ポリ(3,4-エチレンジオキシチオフェン))スキンを構築した。
・このスキン層は、リチウムイオンおよび電子の輸送を容易にし、望ましくない層状からスピネル/岩塩相への相転移、およびそれに伴う酸素損失を大幅に抑制し、粒界および粒内の機械的亀裂を軽減し、効果的に安定化する。
・このアプローチによって、高電圧動作下での容量と熱安定性を著しく向上させることを確認。
・二次粒子レベルと一次粒子レベルの両方の層状酸化物でこの保護皮膜を構築することは、高エネルギー、長寿命および安全なリチウムイオン電池に向けたNiリッチカソードのための有望な設計戦略となりうる。
<元記事>https://www.nature.com/articles/s41560-019-0387-1

著者一覧を見ると中国出身と思われる方が多い。政治的な問題はあるかもしれないが、中国の電池に対する熱意が感じられる。若い方が成長することは中国国内に良い影響を及ぼすことが期待できる。
一方で、日本は電池を主要産業にしようとここ数年足掻いているが、人材育成につながる具体的なアクションは起こしたのであろうか。

お気軽にご連絡ください。
●会員向けの購読依頼
まとめサイト担当:comment_x (at) arm-tech.jp
●電動化およびエネルギー関連の商品・サービス、電池戦略に関するご相談
大木:Hideki.Oki (at) arm-tech.jp

10 5月 2019

【論文紹介】Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite | Nature

出典https://www.nature.com/

Nature, 2019. DOI: 10.1038/s41586-019-1175-6
・460 Wh / kgのフルセルエネルギー密度で4V級の水系リチウムイオン電池を実証。
・正極にグラファイトとLiBr/LiClの複合電極を用いて、高濃度水系電解液「water-in-salt」、負極にもグラファイトを組み合わせた。
・正極反応では、臭化物イオンと塩化物イオンが酸化されてグラファイトにインターカレートされる。
・この反応は正極のエネルギー密度を970 Wh / kgに高められる。
・非常の高いエネルギー密度を水系電解液で達成したが、サイクル寿命、使用温度範囲には課題がある。
<元記事>https://www.nature.com/articles/s41586-019-1175-6

日本やアメリカなどではフッ素イオンに注目していた。活物質との相互作用が強く充放電させるのに様々な工夫をしていた。一方、この論文はイオン自体を変えることでこのような成果に至った。
製品になるかどうかは置いておいて、固定概念に縛られることがない発想が中国で増えてきたように感じる。新しい電気化学デバイスが生まれるかもしれない。

お気軽にご連絡ください。
●会員向けの購読依頼
まとめサイト担当:comment_x (at) arm-tech.jp
●電動化およびエネルギー関連の商品・サービス、電池戦略に関するご相談
大木:Hideki.Oki (at) arm-tech.jp

09 1月 2018

【論文紹介】Enabling the high capacity of lithium-rich anti-fluorite lithium iron oxide by simultaneous anionic and cationic redox

出典:https://www.nature.com/

Nature Energy 2, 963–971 (2017) doi:10.1038/s41560-017-0043-6
・LiB正極中の酸素のレドックス反応を利用することで正極容量を増加させる試み。
・これまでも同様の試みはあったが、酸素をレドックスさせることで酸素ガスを発生し、結晶構造が不安定になることを回避できなかった。
・今回、低コスト化のため、コバルトを用いず、鉄原子を用い、さらに、酸素をレドックスに酸化させても酸素放出等の不安定化を抑制するための組成を計算によって求めた結果、LiリッチLi5FeO4が良好であることを発見した。
<元記事>https://www.nature.com/articles/s41560-017-0043-6

15 12月 2017

【論文紹介(オープンアクセス)】Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries

出典:http://www.nature.com/

Nature Communications 8, Article number: 627 (2017) doi:10.1038/s41467-017-00574-9
・従来まで、リチウムイオン電池の活物質は水を含まない方が良いと考えられてきた。
・そのため、TiO2やLTOなどの負極活物質を合成する際は、500℃以上の高温で焼成するというのが一般的であった。
・本報告は、260℃以下の温度で焼成したチタン酸リチウム水和物が高出力、長寿命化に重要であるとのこと。
・低温で焼成することで、粒子の凝集による粗大化を抑制し、多相のナノ構造を形成する。
・これにより、35Cで充電可能な可逆容量130mAh/gの負極活物質が合成される。
・さらに、サイクル当たり0.001%の容量損失で10000サイクル以上の寿命を確認。
<元記事>http://www.nature.com/articles/s41467-017-00574-9

20 7月 2017

【論文紹介】Burning lithium in CS2 for high-performing compact Li2 S–graphene nanocapsules for Li–S batteries | Nature Energy

出典:https://www.nature.com/

Nature Energy 2, Article number: 17090 (2017) doi:10.1038/nenergy.2017.90
・LiS電池の硫黄正極の大きな体積変化による容量劣化の対策としてLiドーピング状態の硫黄をグラフェンでカプセル化した。
・リチウムフォイルをCS<sub>2</sub>蒸気中で燃焼させることによってLi<sub>2</sub>Sが数層のグラフェンでカプセル化する。
・膨張状態でグラフェンカプセル化することで、硫黄正極の大きな体積変化においても安定したサイクルを示す。
<元記事>https://www.nature.com/articles/nenergy201790

01 6月 2016

【論文紹介】A new strategy to mitigate the initial capacity loss of lithium ion batteries

出展:http://www.sciencedirect.com/

Journal of Power Sources, Volume 324, 30 August 2016, Pages 150–157
・ハードカーボン、スズ、シリコン等の大容量負極は、同時に大きな不可逆容量を有する。そのため、フルセルでの不可逆容量が増大し、フルセルとしてのエネルギー密度はそれほど上がらない(使用できない正極が増加)。これを解決する手法についての報告。
・本報告では正極にLi5FeO4 (LFO)を添加している。これにより、正極の不可逆容量を増大させることで、負極の不可逆容量分を打ち消し、フルセルとしてのエネルギー密度が増加する(搭載した正極を全て使用する事ができる)。
・更に、LFOを添加することで、正極の劣化も抑制することを確認。

<元記事>http://www.sciencedirect.com/science/article/pii/S0378775316306097

21 8月 2014

【論文紹介】Differentiating allotropic LiCoO2/Li2Co2O4: A structural and electrochemical study

出展:http://ars.els-cdn.com/

出展:http://ars.els-cdn.com/

Journal of Power Sources, Volume 271, 20 December 2014, Pages 97–103
【概要】
・スピネル​​Li2Co2O4と、層状LiCoO2を、高分解能X線回折を用いて分析。
・八面体サイトにおけるLiとCo間の相互交換が450〜650℃の高い温度で起こり、スピネルLi2Co2O4が形成。
・スピネルLi2Co2O4は20mAh/gの低い可逆容量と80mAh/gの大きな容量ロスを確認。
・LiCoO 2をとLi2Co2O4の間で歪んだスピネル相を今回初めて報告。
<続き:元記事>