18 7月 2018

【論文紹介】Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries

出典:https://www.nature.com/

Nature Nanotechnology doi: 10.1038/s41565-018-0183-2
・リチウム金属の低電位と、LiCoPF4等の高電位正極を安定して用いることができる不燃性電解液。
・fluoroethylene carbonate(FEC)/3,3, 3-fluoroethylmethyl carbonate(FEMC)/1,1,2,2-tetrafluoroethyl-2′,2′, 2′-trifluoroethyl ether(HFE) (FEC:FEMC:HFE, 2:6:2 by weight)の組成の電解液を用いた。
・この電解液はリチウムデンドライトの成長を抑制し、高クーロン効率でリチウムの析出溶解を可能にする。
・正極側では5〜10nm厚の中間層を形成するため、NMC811およびLCP正極でそれぞれ99.93%,98.81%のクーロン効率で充放電可能。
・Li/NMC811、Li/LCPのフルセルでは1000サイクル後に90%以上の容量を維持することを確認。
<元記事>https://www.nature.com/articles/s41565-018-0183-2

05 2月 2018

【論文紹介(オープンアクセス)】Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries – ScienceDirect

出展:https://www.sciencedirect.com/

Chem Volume 4, Issue 1, 11 January 2018, Pages 174-185, https://doi.org/10.1016/j.chempr.2017.10.017
・LiFSIの高濃度電解液を用いることでリチウム金属電池のデンドライト形成を抑制し、耐久性を向上させた。
・炭酸塩電解液(ジメチルカーボネート[DMC]、プロピレンカーボネート、エチレンカーボネート/ DMC)のLiFSI濃度を10Mに増加させた。
・これにより、Li金属表面、及び正極のNMC(622)表面上にLiF及びFリッチなSEIを形成し、これがリチウムデンドライトの成長を抑制する。
・このLiメタル/NMC(622)フルセルは、4.6Vの上限電圧で100サイクル後に86%の容量を維持した。
<元記事>https://www.sciencedirect.com/science/article/pii/S245192941730445X?via=ihub

12 11月 2017

【論文紹介】Flexible Aqueous Li-Ion Battery with High Energy and Power Densities

出典:https://techxplore.com/

Advanced Materials (2017). DOI: 10.1002/adma.201701972
・ “water-in-salt”ゲル電解質を利用した、安全でフレキシブルな水系リチウムイオン電池について。
・正極、負極ともに材料はLiVPO4Fを用いた対称セル。
・高速なLiイオン輸送を可能にするLi2CO3-LiFからなる疎水性のSEIを形成し、電極表面での水の電気分解を抑制する。
・そのため、水系電解液において2.4Vの電圧、141Wh/kgのエネルギー密度, 600W/kgの出力密度、4000サイクル以上の寿命を達成する。
・曲げや切断によっても高い安全性を示すだけでなく、動作し続ける。
<元記事>http://onlinelibrary.wiley.com/doi/10.1002/adma.201701972/abstract
<電池をハサミで切るなどしても動作し続ける動画>https://techxplore.com/news/2017-11-scientists-safer-durable-lithium-ion-battery.html

15 8月 2017

【論文紹介】Multi-functional Flexible Aqueous Sodium-Ion Batteries with High Safety

出展:http://www.sciencedirect.com/

Chem Volume 3, Issue 2, 10 August 2017, Pages 348–362
・メディア等で取り上げられている”涙で動くフレキシブル電池”の元論文。
・ウェアラブル機器に用いる電池としては、有毒な腐食性電解液を用いたくはない。
・生体適合性のある安全な生理食塩水または細胞培養培地を電解質として用いたナトリウムイオン電池を開発。
・正極にNa0.44MnO2を、負極にNaTiO2(PO4)3@Cを用いて帯状または繊維状のフレキシブルな水系ナトリウムイオン電池を作製した。
・この安全でフレキシブルな繊維状電池はウェアラブルデバイス用電池として有望である。
<元記事>http://www.sciencedirect.com/science/article/pii/S2451929417302176